Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Clin Pharm ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551751

RESUMO

BACKGROUND: Medication burden and complexity have been longstanding problems in chronically ill patients. However, more data are needed on the extent and impact of medication burden and complexity in the transfusion-dependent thalassaemia population. AIM: The aim of this study was to determine the characteristics of medication complexity and polypharmacy and determine their relationship with drug-related problems (DRP) and control of iron overload in transfusion-dependent thalassaemia patients. METHOD: Data were derived from a cross-sectional observational study on characteristics of DRPs conducted at a Malaysian tertiary hospital. The medication regimen complexity index (MRCI) was determined using a validated tool, and polypharmacy was defined as the chronic use of five or more medications. The receiver operating characteristic curve analysis was used to determine the optimal cut-off value for MRCI, and logistic regression analysis was conducted. RESULTS: The study enrolled 200 adult patients. The MRCI cut-off point was proposed to be 17.5 (Area Under Curve = 0.722; sensitivity of 73.3% and specificity of 62.0%). Approximately 73% and 64.5% of the patients had polypharmacy and high MRCI, respectively. Findings indicated that DRP was a full mediator in the association between MRCI and iron overload. CONCLUSION: Transfusion-dependent thalassaemia patients have high MRCI and suboptimal control of iron overload conditions in the presence of DRPs. Thus, future interventions should consider MRCI and DRP as factors in serum iron control.

2.
Molecules ; 27(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080473

RESUMO

Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) used to treat pain and inflammation. The objective of the current study was to develop a sensitive, fast and high-throughput HPLC-ESI-MS/MS method to measure etoricoxib levels in human plasma using a one-step methanol protein precipitation technique. A tandem mass spectrometer equipped with an electrospray ionization (ESI) source operated in a positive mode and multiple reaction monitoring (MRM) were used for data collection. The quantitative MRM transition ions were m/z 359.15 > 279.10 and m/z 363.10 > 282.10 for etoricoxib and IS. The linear range was from 10.00 to 4000.39 ng/mL and the validation parameters were within the acceptance limits of the European Medicine Agency (EMA) and Food and Drug Analysis (FDA) guidelines. The present method was sensitive (10.00 ng/mL with S/N > 40), simple, selective (K prime > 2), and fast (short run time of 2 min), with negligible matrix effect and consistent recovery, suitable for high throughput analysis. The method was used to quantitate etoricoxib plasma concentrations in a bioequivalence study of two 120 mg etoricoxib formulations. Incurred sample reanalysis results further supported that the method was robust and reproducible.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Etoricoxib , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Equivalência Terapêutica
3.
Eur J Mass Spectrom (Chichester) ; 28(1-2): 35-46, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35668610

RESUMO

A fast, selective and reproducible LC-MS/MS method with simple sample preparation was developed and validated for a polar compound, allopurinol in human plasma, using acyclovir as internal standard (IS). Chromatographic separation was achieved using Agilent Poroshell 120 EC-C18 (100 × 2.1 mmID, 2.7 µm) analytical column. The mobile phase was comprised of 0.1%v/v formic acid-methanol (95:05; v/v), at a flow rate of 0.45 mL/min. The effect of different protein precipitation agents used in sample preparation such as methanol, acetonitrile, a mixture of acetonitrile-methanol and a mixture of acetonitrile-acetone were evaluated to optimize the extraction efficiency of allopurinol and IS. The use of acetone-acetonitrile (50:50, v/v) as protein precipitating agent shortened the sample preparation time and improved the recovery of allopurinol to above 93%. The IS-normalised matrix factors at two concentration levels were 1.0, with CV of 5.1% and 4.2%. Allopurinol in plasma was stable at benchtop for 24 h, in autosampler tray for 48 h, in instrumentation room for 48 h, in freezer after 7 freeze-thaw cycles and in freezer for 140 days. Allopurinol stock standard solutions were stable for 140 days at room temperature and in the chiller. The short sample run time of the validated bioanalytical method allowed high throughput analysis of plasma samples in pharmacokinetic study of an allopurinol formulation. The robustness and reproducibility of the bioanalytical method was reaffirmed through incurred sample reanalysis (ISR).


Assuntos
Alopurinol , Espectrometria de Massas em Tandem , Acetona , Acetonitrilas , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Humanos , Metanol , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA